Calculus: Unit 4
Definite Integrals & Differential Equations
Course Philosophy/Description

Calculus is a college prep course that introduces students to the four major concepts in calculus: The Limit, The Derivative, The Definite Integral and The Indefinite Integral. This course will prepare students for further study in all branches of higher mathematics, science and related fields. By the end of the course students will have learned Limits and Continuity; the Fundamental Theorems of Calculus; Definition of the Derivative of a Function and Techniques of Differentiation; Applications of the Derivative to maximize or minimize a function; the Chain Rule, Mean Value Theorem; Rate of Change problems; Curve Sketching; Definite and Indefinite integration of algebraic, trigonometric, and transcendental functions.

The numerical and graphical procedures covered in this course can be applied to any kind of functions they have encountered in their previous courses. The use of technology reinforces these approaches to confirm and interpret the results. Calculus is a transition course linking the mathematical and algebraic procedures taught in previous classes with the higher-level skills required in post-secondary technical programs.

PREREQUISITES:

Before studying Calculus, all students must successfully complete coursework for Algebra I, Geometry, Algebra II, and Pre-Calculus. Students must be familiar with the properties, the algebra, the graphs and the language of functions.
This ESL framework was designed to be used by bilingual, dual language, ESL and general education teachers. Bilingual and dual language programs use the home language and a second language for instruction. ESL teachers and general education or bilingual teachers may use this document to collaborate on unit and lesson planning to decide who will address certain components of the SLO and language objective. ESL teachers may use the appropriate leveled language objective to build lessons for ELLs which reflects what is covered in the general education program. In this way, whether it is a pull-out or push-in model, all teachers are working on the same Student Learning Objective connected to the Common Core standard. The design of language objectives are based on the alignment of the World-Class Instructional Design Assessment (WIDA) Consortium’s English Language Development (ELD) standards with the Common Core State Standards (NJSLS). WIDA’s ELD standards advance academic language development across content areas ultimately leading to academic achievement for English learners. As English learners are progressing through the six developmental linguistic stages, this framework will assist all teachers who work with English learners to appropriately identify the language needed to meet the requirements of the content standard. At the same time, the language objectives recognize the cognitive demand required to complete educational tasks. Even though listening and reading (receptive) skills differ from speaking and writing (expressive) skills across proficiency levels the cognitive function should not be diminished. For example, an Entering Level One student only has the linguistic ability to respond in single words in English with significant support from their home language. However, they could complete a Venn diagram with single words which demonstrates that they understand how the elements compare and contrast with each other or they could respond with the support of their home language (L1) with assistance from a teacher, para-professional, peer or a technology program.

[Link to State of New Jersey Department of Education model curriculum page]

http://www.state.nj.us/education/modelcurriculum/ela/ELLOverview.pdf
<table>
<thead>
<tr>
<th>#</th>
<th>Student Learning Objective</th>
<th>NJSLS</th>
<th>Calculus Correlation</th>
</tr>
</thead>
</table>
| 1 | • Approximate the area under the graph of nonnegative continuous functions by using rectangle approximation method
• Interpret the area under the graph as a net accumulation of rate of change
• Express the area under the curve as a definite integral and as a limit of Riemann Sum
• Compute the area under a curve using a numerical integration procedure
• Apply rules of definite integrals and find the average value of a function over a closed interval | F-IF.A.1–A.3
F-IF.C.9 | 4.1, 4.2, 4.3 |
| 2 | • Apply the Fundamental Theorem of Calculus
• Understand the relationship between the derivative and definite integral as expressed in both parts of the Fundamental Theorem of Calculus
• Approximate the definite integral by using the Trapezoidal Rule and by using Simpson Rule
• Construct antiderivatives using the Fundamental Theorem of Calculus
• Use Euler’s Method for graphing a solution to an initial value problem | F-IF.A.1–A.3
F-IF.C.9 | 4.4 |
| 3 | • Compute indefinite and definite integrals by the method of substitution
• Use integration by parts to evaluate indefinite and definite integrals
• Use integration by parts to integrate inverse trigonometric and logarithm functions | F-IF.A.1–A.3
F-IF.C.9 | 4.5, 4.6, 5.1,
5.2, 5.3, 5.4,
5.7, 5.8, 8.1,
8.2, 8.3 |
| 4 | • Use integration to calculate the areas of regions in a plane
• Use integration (by slices or shells) to calculate volumes of solids
• Use integration to calculate surface areas of solids of a revolution | G.C.B.5
G.GMD.B.4
G.MG.A.3 | 7.1, 7.2, 7.3, 7.4 |
Research about Teaching and Learning Mathematics

Structure teaching of mathematical concepts and skills around problems to be solved (Checkly, 1997; Wood & Sellars, 1996; Wood & Sellars, 1997)

Encourage students to work cooperatively with others (Johnson & Johnson, 1975; Davidson, 1990)

Use group problem-solving to stimulate students to apply their mathematical thinking skills (Artzt & Armour-Thomas, 1992)

Students interact in ways that support and challenge one another’s strategic thinking (Artzt, Armour-Thomas, & Curcio, 2008)

Activities structured in ways allowing students to explore, explain, extend, and evaluate their progress (National Research Council, 1999)

There are three critical components to effective mathematics instruction (Shellard & Moyer, 2002):

- Teaching for conceptual understanding
- Developing children’s procedural literacy
- Promoting strategic competence through meaningful problem-solving investigations

Teachers should be:

- Demonstrating acceptance and recognition of students’ divergent ideas
- Challenging students to think deeply about the problems they are solving, extending thinking beyond the solutions and algorithms required to solve the problem
- Influencing learning by asking challenging and interesting questions to accelerate students’ innate inquisitiveness and foster them to examine concepts further
- Projecting a positive attitude about mathematics and about students’ ability to “do” mathematics

Students should be:

- Actively engaging in “doing” mathematics
- Solving challenging problems
- Investigating meaningful real-world problems
- Making interdisciplinary connections
- Developing an understanding of mathematical knowledge required to “do” mathematics and connect the language of mathematical ideas with numerical representations
- Sharing mathematical ideas, discussing mathematics with one another, refining and critiquing each other’s ideas and understandings
- Communicating in pairs, small group, or whole group presentations
- Using multiple representations to communicate mathematical ideas
- Using connections between pictures, oral language, written symbols, manipulative models, and real-world situations
• Using technological resources and other 21st century skills to support and enhance mathematical understanding

Mathematics is not a stagnant field of textbook problems; rather, it is a dynamic way of constructing meaning about the world around us, generating knowledge and understanding about the real world every day. Students should be metaphorically rolling up their sleeves and “doing mathematics” themselves, not watching others do mathematics for them or in front of them. (Protheroe, 2007)

Balanced Mathematics Instructional Model

Balanced math consists of three different learning opportunities; guided math, shared math, and independent math. Ensuring a balance of all three approaches will build conceptual understanding, problem solving, computational fluency, and procedural fluency. Building conceptual understanding is the focal point of developing mathematical proficiency. Students should frequently work on rigorous tasks, talk about the math, explain their thinking, justify their answer or process, build models with graphs or charts or manipulatives, and use technology.

When balanced math is used in the classroom it provides students opportunities to:

• solve problems
• make connections between math concepts and real-life situations
• communicate mathematical ideas (orally, visually and in writing)
• choose appropriate materials to solve problems
• reflect and monitor their own understanding of the math concepts
• practice strategies to build procedural and conceptual confidence

Teacher builds conceptual understanding by modeling through demonstration, explicit instruction, and think alouds, as well as guiding students as they practice math strategies and apply problem solving strategies. (whole group or small group instruction)

Teacher and students practice mathematics processes together through interactive activities, problem solving, and discussion. (whole group or small group instruction)

Students practice math strategies independently to build procedural and computational fluency. Teacher assesses learning and reteaches as necessary. (whole group instruction, small group instruction, or centers)
Effective Pedagogical Routines/Instructional Strategies

<table>
<thead>
<tr>
<th>Collaborative Problem Solving</th>
<th>Analyze Student Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect Previous Knowledge to New Learning</td>
<td>Identify Student’s Mathematical Understanding</td>
</tr>
<tr>
<td>Making Thinking Visible</td>
<td>Identify Student’s Mathematical Misunderstandings</td>
</tr>
<tr>
<td>Develop and Demonstrate Mathematical Practices</td>
<td>Interviews</td>
</tr>
<tr>
<td>Inquiry-Oriented and Exploratory Approach</td>
<td>Role Playing</td>
</tr>
<tr>
<td>Multiple Solution Paths and Strategies</td>
<td>Diagrams, Charts, Tables, and Graphs</td>
</tr>
<tr>
<td>Use of Multiple Representations</td>
<td>Anticipate Likely and Possible Student Responses</td>
</tr>
<tr>
<td>Explain the Rationale of your Math Work</td>
<td>Collect Different Student Approaches</td>
</tr>
<tr>
<td>Quick Writes</td>
<td>Multiple Response Strategies</td>
</tr>
<tr>
<td>Pair/Trio Sharing</td>
<td>Asking Assessing and Advancing Questions</td>
</tr>
<tr>
<td>Turn and Talk</td>
<td>Revoicing</td>
</tr>
<tr>
<td>Charting</td>
<td>Marking</td>
</tr>
<tr>
<td>Gallery Walks</td>
<td>Recapping</td>
</tr>
<tr>
<td>Small Group and Whole Class Discussions</td>
<td>Challenging</td>
</tr>
<tr>
<td>Student Modeling</td>
<td>Pressing for Accuracy and Reasoning</td>
</tr>
<tr>
<td></td>
<td>Maintain the Cognitive Demand</td>
</tr>
</tbody>
</table>
Educational Technology

Standards

- **Technology Operations and Concepts**
 - Construct a spreadsheet workbook with multiple worksheets, rename tabs to reflect the data on the worksheet, and use mathematical or logical functions, charts and data from all worksheets to convey the results.

 Example: Students will use appropriate digital tools and software to problem solve, check for accuracy and support answers.

- **Digital Citizenship**
 - Analyze the capabilities and limitations of current and emerging technology resources and assess their potential to address personal, social, lifelong learning and career needs.

 Example: Students will be able to use critical thinking skills to plan, conduct, research, manage projects, solve problems, and make informed decisions using appropriate digital tools and resource.

- **Research and Information Literacy**
 - Produce a position statement about a real world problem by developing a systematic plan of investigation with peers and experts synthesizing information from multiple sources.

 Example: Students will produce a position statement about a real world problem by developing a systematic plan of investigation with peers and experts synthesizing information from multiple sources.

- **Design: Critical Thinking, Problem Solving, and Decision Making**
 - Evaluate the strengths and limitations of emerging technologies and their impact on educational, career, personal and or social needs.

 Example: A problem-solving approach will allow students to construct their own idea about mathematics and to take responsibility for their own learning.
Career Ready Practices

Career Ready Practices describe the career-ready skills that all educators in all content areas should seek to develop in their students. They are practices that have been linked to increase college, career, and life success. Career Ready Practices should be taught and reinforced in all career exploration and preparation programs with increasingly higher levels of complexity and expectation as a student advances through a program of study.

- **CRP2. Apply appropriate academic and technical skills.**
 Career-ready individuals readily access and use the knowledge and skills acquired through experience and education to be more productive. They make connections between abstract concepts with real-world applications, and they make correct insights about when it is appropriate to apply the use of an academic skill in a workplace situation.
 Example: Students are able to apply concepts in the classroom to solve real life application problems and analyze their solutions for accuracy.

- **CRP4. Communicate clearly and effectively and with reason.**
 Career-ready individuals communicate thoughts, ideas, and action plans with clarity, whether using written, verbal, and/or visual methods. They communicate in the workplace with clarity and purpose to make maximum use of their own and others’ time. They are excellent writers; they master conventions, word choice, and organization, and use effective tone and presentation skills to articulate ideas. They are skilled at interacting with others; they are active listeners and speak clearly and with purpose. Career-ready individuals think about the audience for their communication and prepare accordingly to ensure the desired outcome.
 Example: Students are able to listen, communicate and have constructed arguments to justify their approach and conclusion to a problem.

- **CRP8. Utilize critical thinking to make sense of problems and persevere in solving them.**
 Career-ready individuals readily recognize problems in the workplace, understand the nature of the problem, and devise effective plans to solve the problem. They are aware of problems when they occur and take action quickly to address the problem; they thoughtfully investigate the root cause of the problem prior to introducing solutions. They carefully consider the options to solve the problem. Once a solution is agreed upon, they follow through to ensure the problem is solved, whether through their own actions or the actions of others.
 Example: Students are able to utilize concepts learned in the classroom to analyze problems, create a plan to solve the problems and check their solution for correctness.

- **CRP11. Use technology to enhance productivity.**
 Career-ready individuals find and maximize the productive value of existing and new technology to accomplish workplace tasks and solve workplace problems. They are flexible and adaptive in acquiring new technology. They are proficient with ubiquitous technology applications. They understand the inherent risks-personal and organizational-of technology applications, and they take actions to prevent or mitigate these risks.
 Example: Students are able to use a variety of technology such as the TI-84 and online resources to effectively to help them in problem solving.
WIDA Proficiency Levels

At the given level of English language proficiency, English language learners will process, understand, produce or use:

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
</table>
| **6- Reaching** | - Specialized or technical language reflective of the content areas at grade level
- A variety of sentence lengths of varying linguistic complexity in extended oral or written discourse as required by the specified grade level
- Oral or written communication in English comparable to proficient English peers |
| **5- Bridging** | - Specialized or technical language of the content areas
- A variety of sentence lengths of varying linguistic complexity in extended oral or written discourse, including stories, essays or reports
- Oral or written language approaching comparability to that of proficient English peers when presented with grade level material. |
| **4- Expanding** | - Specific and some technical language of the content areas
- A variety of sentence lengths of varying linguistic complexity in oral discourse or multiple, related sentences or paragraphs
- Oral or written language with minimal phonological, syntactic or semantic errors that may impede the communication, but retain much of its meaning, when presented with oral or written connected discourse, with sensory, graphic or interactive support |
| **3- Developing** | - General and some specific language of the content areas
- Expanded sentences in oral interaction or written paragraphs
- Oral or written language with phonological, syntactic or semantic errors that may impede the communication, but retain much of its meaning, when presented with oral or written, narrative or expository descriptions with sensory, graphic or interactive support |
| **2- Beginning** | - General language related to the content area
- Phrases or short sentences
- Oral or written language with phonological, syntactic, or semantic errors that often impede the communication when presented with one to multiple-step commands, directions, or a series of statements with sensory, graphic or interactive support |
| **1- Entering** | - Pictorial or graphic representation of the language of the content areas
- Words, phrases or chunks of language when presented with one-step commands directions, WH-, choice or yes/no questions, or statements with sensory, graphic or interactive support |
Language Development Supports For English Language Learners
to Increase Comprehension and Communication Skills

Environment
- Welcoming and stress-free
- Respectful of linguistic and cultural diversity
- Honors students' background knowledge
- Sets clear and high expectations
- Includes routines and norms
- Is thinking-focused vs. answer-seeking
- Offers multiple modalities to engage in content learning and to demonstrate understanding
- Includes explicit instruction of specific language targets
- Provides participation techniques to include all learners
- Integrates learning centers and games in a meaningful way
- Provides opportunities to practice and refine receptive and productive skills in English as a new language
- Integrates meaning and purposeful tasks/activities that:
 - Are accessible by all students through multiple entry points
 - Are relevant to students' lives and cultural experiences
 - Build on prior mathematical learning
 - Demonstrate high cognitive demand
 - Offer multiple strategies for solutions
 - Allow for a language learning experience in addition to content

Sensory Supports*
- Real-life objects (realia) or concrete objects
- Physical models
- Manipulatives
- Pictures & photographs
- Visual representations or models such as diagrams or drawings
- Videos & films
- Newspapers or magazines
- Gestures
- Physical movements
- Music & songs

Graphic Supports*
- Graphs
- Charts
- Timelines
- Number lines
- Graphic organizers
- Graphing paper

Interactive Supports*
- In a whole group
- In a small group
- With a partner such as Turn-and-Talk
- In pairs as a group (first, two pairs work independently, then they form a group of four)
- In triads
- Cooperative learning structures such as Think-Pair-Share
- Interactive websites or software
- With a mentor or coach

Verbal and Textual Supports
- Labeling
- Students' native language
- Modeling
- Repetitions
- Paraphrasing
- Summarizing
- Guiding questions
- Clarifying questions
- Probing questions
- Leveled questions such as What? Where? How? Why?
- Questioning prompts & cues
- Word Banks
- Sentence starters
- Sentence frames
- Discussion frames
- Talk moves, including Wait Time

BUILDING EQUITY IN YOUR TEACHING PRACTICE

How do the essential questions highlight the connection between the big ideas of the unit and equity in your teaching practice?

CONTENT INTEGRATION
Teachers use examples and content from a variety of cultures & groups.

- This unit / lesson is connected to other topics explored with students.
- There are multiple viewpoints reflected in the content of this unit / lesson.
- The materials and resources are reflective of the diverse identities and experiences of students.
- The content affirms students, as well as exposes them to experiences other than their own.

KNOWLEDGE CONSTRUCTION
Teachers help students understand how knowledge is created and influenced by cultural assumptions, perspectives & biases.

- This unit / lesson provides context to the history of privilege and oppression.
- This unit / lesson addresses power relationships.
- This unit / lesson help students to develop research and critical thinking skills.
- This curriculum creates windows and mirrors* for students.

PREJUDICE REDUCTION
Teachers implement lessons and activities to assert positive images of ethnic groups & improve intergroup relations.

- This unit / lesson help students question and unpack biases & stereotypes.
- This unit / lesson help students examine, research and question information and sources.
- The curriculum encourage discussion and understanding about the groups of people being represented.
- This unit / lesson challenges dominant perspectives.

EQUITABLE PEDAGOGY
Teachers modify techniques and methods to facilitate the academic achievement of students from diverse backgrounds.

- The instruction has been modified to meet the needs of each student.
- Students feel respected and their cultural identities are valued.
- Additional supports have been provided for students to become successful and independent learners.
- Opportunities are provided for student to reflect on their learning and provide feedback.

EMPOWERING SCHOOL CULTURE
Using the other four dimensions to create a safe and healthy educational environment for all.

- There are opportunities for students to connect with the community.
- My classroom is welcoming and supportive for all students?
- I am aware of and sensitive to the needs of my students and their families.
- There are effective parent communication systems established. Parents can talk to me about issues as they arise in my classroom.

Culturally Relevant Pedagogy Examples

- **Present New Concepts Using Student Vocabulary:** Use student diction to capture attention and build understanding before using academic terms.
 Example: Work with students to create a variety of sorting and match games of vocabulary words in this unit. Students can work in teams or individually to play these games for approximately 10-15 minutes each week. This will give students a different way of becoming familiar with the vocabulary rather than just looking up the words or writing the definition down.

- **Use Media that Positively Depict a Range of Culture:** Include different cultures and languages in your curriculum by presenting relevant material, such as movies, about them.
 Example: Use multiple approach such as an online component that can be shared with students and parents. Work as a facilitator and set a timeline for students to accomplish task.
 https://quizlet.com/subject/integrals/

- **Call on Each Student:** Encourage each student to share his or her thoughts through call-and-response, keeping the class’s attention in the process.
 Example: Foster confidence. Make the assessment process less intimidating by offering different ways to demonstrate skills and understanding. For example, avoid handing out quizzes that are purely multiple choice or fill-in-the-blank. Among other question types, mix in problems that involve explaining the step necessary to get to the answer. After, give students time to assess their own progress and performance, helping them focus on growth.

- **Encourage Students to Propose Ideas for Projects:** Let students take projects from concept to completion by pitching you idea, allowing them to showcase their strengths.
 Example: Students will take accountability to develop project ideas that meet academic standards. You will act as a coach to guide students that falls short to refine their ideas, if he/or she can’t refine their ideas to meet the standards they can choose from a project list of options you provide.
Differentiated Instruction

Accommodate Based on Students Individual Needs: Strategies

<table>
<thead>
<tr>
<th>Time/General</th>
<th>Processing</th>
<th>Comprehension</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra time for assigned tasks</td>
<td>Extra Response time</td>
<td>Precise processes for balanced</td>
<td>Teacher-made checklist</td>
</tr>
<tr>
<td>Adjust length of assignment</td>
<td>Have students verbalize steps</td>
<td>math instructional model</td>
<td>Use visual graphic</td>
</tr>
<tr>
<td>Timeline with due dates for reports and projects</td>
<td>Repeat, clarify or reword directions</td>
<td>Short manageable tasks</td>
<td>organizers</td>
</tr>
<tr>
<td>Communication system between home and school</td>
<td>Mini-breaks between tasks</td>
<td>Brief and concrete directions</td>
<td>Reference resources to</td>
</tr>
<tr>
<td>Provide lecture notes/outline</td>
<td>Provide a warning for transitions</td>
<td>Provide immediate feedback</td>
<td>promote independence</td>
</tr>
<tr>
<td></td>
<td>Reading partners</td>
<td>Small group instruction</td>
<td>Visual and verbal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Emphasize multi-sensory learning</td>
<td>reminders</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assistive Technology</th>
<th>Tests/Quizzes/Grading</th>
<th>Behavior/Attention</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer/whiteboard</td>
<td>Extended time</td>
<td>Consistent daily structured routine</td>
<td>Individual daily planner</td>
</tr>
<tr>
<td>Tape recorder</td>
<td>Study guides</td>
<td>Simple and clear classroom rules</td>
<td>Display a written agenda</td>
</tr>
<tr>
<td>Video Tape</td>
<td>Shortened tests</td>
<td>Frequent feedback</td>
<td>Note-taking assistance</td>
</tr>
<tr>
<td></td>
<td>Read directions aloud</td>
<td></td>
<td>Color code materials</td>
</tr>
</tbody>
</table>

Tests/Quizzes/Grading

- Extended time
- Study guides
- Shortened tests
- Read directions aloud

Behavior/Attention

- Consistent daily structured routine
- Simple and clear classroom rules
- Frequent feedback

Organization

- Individual daily planner
- Display a written agenda
- Note-taking assistance
- Color code materials
Differentiated Instruction

Accommodate Based on Content Needs: Strategies

- Anchor charts to model strategies
- Review Algebra concepts to ensure students have the information needed to progress in understanding
- Pre-teach pertinent vocabulary
- Provide reference sheets that list formulas, step-by-step procedures, theorems, and modeling of strategies
- Word wall with visual representations of mathematical terms
- Teacher modeling of thinking processes involved in solving, graphing, and writing equations
- Introduce concepts embedded in real-life context to help students relate to the mathematics involved
- Record formulas, processes, and mathematical rules in reference notebooks
- Graphing calculator to assist with computations and graphing of trigonometric functions
- Utilize technology through interactive sites to represent nonlinear data
- Graphic organizers to help students interpret the meaning of terms in an expression or equation in context
- Translation dictionary
- Sentence stems to provide additional language support for ELL students.
Interdisciplinary Connections

Model interdisciplinary thinking to expose students to other disciplines.

Social Studies Connection: NJSLS 6.1.8.B.1.a, 6.1.8.C.1.b, 6.1.8.D.1.a, 6.1.8.B.2.a

Name of Task:

- Zoo Sponsored

http://apcentral.collegeboard.com/apc/public/repository/ap10_calculus_ab_q2.pdf

Science Connection: NJSLS HS-PS2-2, HS-PS2-5, HS-PS4-1

Name of Task:

- Metal Wire

Enrichment

What is the purpose of Enrichment?

- The purpose of enrichment is to provide extended learning opportunities and challenges to students who have already mastered, or can quickly master, the basic curriculum. Enrichment gives the student more time to study concepts with greater depth, breadth, and complexity.
- Enrichment also provides opportunities for students to pursue learning in their own areas of interest and strengths.
- Enrichment keeps advanced students engaged and supports their accelerated academic needs.
- Enrichment provides the most appropriate answer to the question, “What do you do when the student already knows it?”

Enrichment is…

- Planned and purposeful
- Different, or differentiated, work – not just more work
- Responsive to students’ needs and situations
- A promotion of high-level thinking skills and making connections within content
- The ability to apply different or multiple strategies to the content
- The ability to synthesize concepts and make real world and cross-curricular connections
- Elevated contextual complexity
- Sometimes independent activities, sometimes direct instruction
- Inquiry based or open ended assignments and projects
- Using supplementary materials in addition to the normal range of resources
- Choices for students
- Tiered/Multi-level activities with flexible groups (may change daily or weekly)

Enrichment is not…

- Just for gifted students (some gifted students may need intervention in some areas just as some other students may need frequent enrichment)
- Worksheets that are more of the same (busywork)
- Random assignments, games, or puzzles not connected to the content areas or areas of student interest
- Extra homework
- A package that is the same for everyone
- Thinking skills taught in isolation
- Unstructured free time
Assessments

Required District/State Assessments
SGO Assessments

Suggested Formative/Summative Classroom Assessments
- Describe Learning Vertically
- Identify Key Building Blocks
- Make Connections (between and among key building blocks)
- Short/Extended Constructed Response Items
- Multiple-Choice Items (where multiple answer choices may be correct)
- Drag and Drop Items
- Use of Equation Editor
- Quizzes
- Journal Entries/Reflections/Quick-Writes
- Accountable talk
- Projects
- Portfolio
- Observation
- Graphic Organizers/Concept Mapping
- Presentations
- Role Playing
- Teacher-Student and Student-Student Conferencing
- Homework
New Jersey Student Learning Standards (NJSLS)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.IF.A.1:</td>
<td>Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If (f) is a function and (x) is an element of its domain, then (f(x)) denotes the output of (f) corresponding to the input (x). The graph of (f) is the graph of the equation (y = f(x)).</td>
</tr>
<tr>
<td>F.IF.A.2:</td>
<td>Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.</td>
</tr>
<tr>
<td>F.IF.A.3:</td>
<td>Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by (f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1)) for (n \geq 1).</td>
</tr>
<tr>
<td>F.IF.C.9:</td>
<td>Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).</td>
</tr>
<tr>
<td>G.GMD.B.4:</td>
<td>Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.</td>
</tr>
<tr>
<td>G.C.B.5:</td>
<td>Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.</td>
</tr>
<tr>
<td>G.MG.A.3:</td>
<td>Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).</td>
</tr>
</tbody>
</table>
Mathematical Practices

MP 1: Make sense of problems and persevere in solving them.
Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary.

MP 2: Reason abstractly and quantitatively.
Mathematically proficient students make sense of quantities and their relationships in problem situations. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

MP 3: Construct viable arguments and critique the reasoning of others.
Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose.

MP 4: Model with mathematics.
Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later.

MP 5: Use appropriate tools strategically.
Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software.
Mathematical Practices

MP 6: Attend to precision.
Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately.

MP 7: Look for and make use of structure.
Mathematically proficient students look closely to discern a pattern or structure. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects.

MP 8: Look for and express regularity in repeated reasoning.
Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.
Grade: 11/12 | Unit: 4 (Four) | Topic: Definite Integrals & Differential Equations

Unit 4 NJSLS: F-IF.A.1, F-IF.A.2, F-IF.A.3, F-IF.C.9, G.C.B.5, G.GMD.B.4, G.MG.A.3

Student Learning Objective (SLO 1):
- Approximate the area under the graph of nonnegative continuous functions by using rectangle approximation method.
- Interpret the area under the graph as a net accumulation of rate of change.
- Express the area under the curve as a definite integral and as a limit of Riemann Sum.
- Compute the area under a curve using a numerical integration procedure.
- Apply rules of definite integrals and find the average value of a function over a closed interval.

New Jersey Student Learning Standards (NJSLS):

F-IF.A.1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).

F.IF.A.2: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F.IF.A.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) \) for \(n \geq 1 \).

F.IF.C.9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

<table>
<thead>
<tr>
<th>MPs</th>
<th>Skills, Strategies & Concepts</th>
<th>Essential Understandings/Questions</th>
<th>Tasks/Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• MP 1</td>
<td>Students will learn about:</td>
<td>• Learning about estimating with finite sum sets the foundation for understanding integral calculus.</td>
<td>• Estimating Finite Sums</td>
</tr>
<tr>
<td>• MP 2</td>
<td>• Approximating the area under the graph of a nonnegative continuous function by using rectangle approximation methods.</td>
<td></td>
<td>• Definite Integrals</td>
</tr>
<tr>
<td>• MP 3</td>
<td>• Interpret the area under a graph as a net accumulation of a rate of change.</td>
<td>• The definite integral is the basis of integral calculus, just as the derivative is the basis of differential calculus.</td>
<td>• Definite Integrals & Numeric Integration 1 & 2</td>
</tr>
<tr>
<td>• MP 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Express the area under a curve as a definite integral and as a limit of Riemann sums.

- Compute the area under a curve using a numerical integration procedure.

- Apply rules for definite integrals and find the average value of a function over a closed interval.

- Common error 1: Some students may assume that the MRAM estimate will always be the average of the LRAM and RRA estimates. Give an example (any quadratic function will do) to show that this is not the case.

- Common error 2: In writing the definite integral, students will omit the \(dx \).

- Common error 3: Students often make algebraic mistakes when finding antiderivatives. Students should get in the habit of differentiating their answer to verify that they found the correct antiderivative.

- Working with the properties of definite integrals helps us to understand better the definite integral. Connecting derivatives and definite integrals sets the stage for the Fundamental Theorem of Calculus.

- As \(n \) increases, students will see the approximating sums converge to a limit, which, after all, is the whole idea of integral calculus. An understanding of the RAM method can lead to a much greater appreciation of the Fundamental Theorem.

- A Riemann sum, which requires a partition of an interval \(I \), is the sum of products, each of which is the value of the function at a point in a subinterval multiplied by the length of that subinterval of the partition.

- Definite Integrals and Antiderivatives

- Integration Mix
<table>
<thead>
<tr>
<th>Student Learning Objective (SLO 2):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Apply the Fundamental Theorem of Calculus.</td>
</tr>
<tr>
<td>• Understand the relationship between the derivative and definite integral as expressed in both parts of the Fundamental Theorem of Calculus.</td>
</tr>
<tr>
<td>• Approximate the definite integral by using the Trapezoidal Rule and by using Simpson Rule.</td>
</tr>
<tr>
<td>• Construct antiderivatives using the Fundamental Theorem of Calculus.</td>
</tr>
<tr>
<td>• Use Eulers’s Method for graphing a solution to an initial value problem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New Jersey Student Learning Standards (NJSLS):</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.IF.A.1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If (f) is a function and (x) is an element of its domain, then (f(x)) denotes the output of (f) corresponding to the input (x). The graph of (f) is the graph of the equation (y = f(x)).</td>
</tr>
<tr>
<td>F.IF.A.2: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.</td>
</tr>
<tr>
<td>F.IF.A.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by (f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1)) for (n \geq 1).</td>
</tr>
<tr>
<td>F.IF.C.9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MPs</th>
<th>Skills, Strategies & Concepts</th>
<th>Essential Understandings/ Questions</th>
<th>Tasks/Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• MP 1</td>
<td>Students will learn about:</td>
<td>• The Fundamental Theorem of Calculus is a triumph of mathematical discovery and the key to solving many problems.</td>
<td>• Fundamental Theorem of Calculus 1-5</td>
</tr>
<tr>
<td>• MP 2</td>
<td>Applying the Fundamental Theorem of Calculus</td>
<td></td>
<td>• Differential Equation</td>
</tr>
<tr>
<td>• MP 3</td>
<td>Understand the relationship between the derivatives and definite integral as expressed in both parts of the Fundamental Theorem of Calculus</td>
<td>• The Fundamental Theorem of Calculus, which has two</td>
<td>• Mixed Review</td>
</tr>
<tr>
<td>• MP 4</td>
<td></td>
<td></td>
<td>• Euler’s Method</td>
</tr>
</tbody>
</table>
• Approximate the definite integral by using the Trapezoidal Rule and by using Simpson’s Rule, and estimate the error in using the Trapezoidal and Simpson’s Rules.

• Connect slope fields using technology and interpret slope fields as visualizations of different equations.

• Use Euler’s Method for graphing a solution to an initial value problem.

• Construct antiderivatives using the Fundamental Theorem of Calculus.

One way to begin this lesson is let \(f(x) = c \) and \(F(x) = cx \) and observe that \(F(x) = \int_0^c c \, dt = \int_0^x f(x) \, dt \) and \(F'(x) = f(x) \). A simple example like this can help students to become comfortable with a function definition in the form \(F(x) = \int_a^x f(t) \, dt \) and can help to make the Fundamental Theorem of Calculus easier to understand.

• Common error- Algebraic mistakes are very common in evaluating antiderivatives. Students should develop the habit of checking answers by differentiating.

distinct formulations, connects differentiation and integration.

• Definite integrals can be approximated using a left Riemann sum, a right Riemann sum, midpoint Riemann sum, or a trapezoidal sum; approximations can be computed using either uniform or non-uniform partitions.

• It is important that students understand that the solution to a differential equation given an initial condition is a function.
<table>
<thead>
<tr>
<th>Grade: 11/12</th>
<th>Unit: 4 (Four)</th>
<th>Topic: Definite Integrals & Differential Equations</th>
</tr>
</thead>
</table>

Student Learning Objective (SLO 3):
- Compute indefinite and definite integrals by the method of substitution.
- Use integration by parts to evaluate indefinite and definite integrals.
 Use integration by parts to integrate inverse trigonometric and logarithm functions.

New Jersey Student Learning Standards (NJSLS):

F.IF.A.1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If \(f \) is a function and \(x \) is an element of its domain, then \(f(x) \) denotes the output of \(f \) corresponding to the input \(x \). The graph of \(f \) is the graph of the equation \(y = f(x) \).

F.IF.A.2: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

F.IF.A.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by \(f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) \) for \(n \geq 1 \).

F.IF.C.9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

<table>
<thead>
<tr>
<th>MPs</th>
<th>Skills, Strategies & Concepts</th>
<th>Essential Understandings/Questions</th>
<th>Tasks/Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• MP 1</td>
<td>Students will learn about:</td>
<td>• Anti-differentiation techniques were historically crucial for applying the results of calculus</td>
<td>• U-Substitution 1 & 2</td>
</tr>
<tr>
<td>• MP 2</td>
<td>- Computing indefinite and definite integrals by the method of substitution</td>
<td></td>
<td>• Integration with substitution</td>
</tr>
<tr>
<td>• MP 3</td>
<td>- Use integration by parts to evaluate indefinite and definite integrals</td>
<td></td>
<td>• Integration by parts</td>
</tr>
<tr>
<td>• MP 4</td>
<td>- Use tabular integration or the method of solving for the unknown integral in order to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade: 11/12</td>
<td>Unit: 4 (Four)</td>
<td>Topic: Definite Integrals & Differential Equations</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

Student Learning Objective (SLO 4):
- Use integration to calculate the areas of regions in a plane.
- Use integration (by slices or shells) to calculate volumes of solids.
- Use integration to calculate surface areas of solids of a revolution.

New Jersey Student Learning Standards (NJSLS):

Student Learning Objective (SLO 4):

G.GMD.B.4: Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

G.C.B.5: Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
G.MG.A.3: Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).★

<table>
<thead>
<tr>
<th>MPs</th>
<th>Skills, Strategies & Concepts</th>
<th>Essential Understandings/Questions</th>
<th>Tasks/Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP 1</td>
<td>Students will learn about:</td>
<td>• The integration of a rate gives the net change.</td>
<td>• VSOR Disk Method</td>
</tr>
<tr>
<td>MP 2</td>
<td>• Solving problems in which a rate is integrated to find the net change over time in a variety of application</td>
<td>• The integral is a tool that can be used to calculate net change and total accumulation.</td>
<td>• Area Between Curves 1 & 2</td>
</tr>
<tr>
<td>MP 3</td>
<td>• Use integration (by slices or shells) to calculate volumes of solids</td>
<td>• The techniques of this section allow us to compute areas of complex regions of the plane.</td>
<td>• Integral as Net Change 1 & 2</td>
</tr>
<tr>
<td>MP 5</td>
<td>• Use integration to calculate surface areas of solid of a revolution</td>
<td>• Areas of certain regions in the plane can be calculated with definite integrals.</td>
<td>• VOS known Cross Section</td>
</tr>
<tr>
<td></td>
<td>• Begin this lesson with a review of the concepts of position, velocity, and acceleration. Stress that the techniques used in studying particle motion can be generalized to other kinds of rates.</td>
<td>• Volumes of solids with known cross sections including discs and washers can be calculated with definite integrals.</td>
<td>• VSOR Shell Method</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• VSOR Washer Method</td>
</tr>
</tbody>
</table>
Vocabulary

<table>
<thead>
<tr>
<th>Left Column</th>
<th>Right Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area below the curve</td>
<td>First Derivative Test</td>
</tr>
<tr>
<td>Area between the curve</td>
<td>Fundamental Theorem of Calculus</td>
</tr>
<tr>
<td>Area under the curve</td>
<td>Higher Derivative</td>
</tr>
<tr>
<td>Asymptote</td>
<td>Implicit Differentiation</td>
</tr>
<tr>
<td>Average rate of change</td>
<td>Infinite Limit</td>
</tr>
<tr>
<td>Axis of rotation</td>
<td>Inflection Point</td>
</tr>
<tr>
<td>Bounds of integration</td>
<td>Instantaneous Velocity</td>
</tr>
<tr>
<td>Chain rule</td>
<td>Integral</td>
</tr>
<tr>
<td>Concave up</td>
<td>Integration by parts</td>
</tr>
<tr>
<td>Concave down</td>
<td>Integration by substitution</td>
</tr>
<tr>
<td>Continuous function</td>
<td>Intermediate Value Theorem</td>
</tr>
<tr>
<td>Continuous differentiable function</td>
<td>L’Hopital’s Rule</td>
</tr>
<tr>
<td>Critical number</td>
<td>Limit</td>
</tr>
<tr>
<td>Critical point</td>
<td>Right Limit/ Left Limit</td>
</tr>
<tr>
<td>Critical value</td>
<td>Local maximum/ Local minimum</td>
</tr>
<tr>
<td>Curve sketching</td>
<td>Mean Value Theorem</td>
</tr>
<tr>
<td>Cylindrical Shell Method</td>
<td>One-sided limit</td>
</tr>
<tr>
<td>Decreasing function</td>
<td>Product Rule</td>
</tr>
<tr>
<td>Definite Integral</td>
<td>Projectile Motion</td>
</tr>
<tr>
<td>Definite integral rules</td>
<td>Quotient Rule</td>
</tr>
<tr>
<td>Derivative</td>
<td>Relative maximum/ Relative minimum</td>
</tr>
<tr>
<td>Derivative of a Power Series</td>
<td>Riemann Sum</td>
</tr>
<tr>
<td>Derivative Rules</td>
<td>Rolle’s Theorem</td>
</tr>
<tr>
<td>Discontinuity</td>
<td>Sandwich Theorem</td>
</tr>
<tr>
<td>Disk method</td>
<td>U-Substitution</td>
</tr>
<tr>
<td>Divergent Sequence and Series</td>
<td>Volume by parallel cross section</td>
</tr>
<tr>
<td>Explicit Differentiation</td>
<td></td>
</tr>
<tr>
<td>Extreme Value Theorem</td>
<td></td>
</tr>
<tr>
<td>Factorial</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References & Suggested Instructional Websites

- http://www.mathwords.com/index_calculus.htm
- http://www.hershey.k12.pa.us/Page/3607
- https://sites.google.com/a/evergreenps.org/ms-griffin-s-math-classes/calculus-notes-worksheets-and-classroom-policies
- https://sites.google.com/site/dgrahamcalculus/ap-calculus-ab/calculus-worksheets
- http://home.cvc.org/math/apcalc/apcalc.htm
- http://www.mathwithmrwood.com/ap-calculus
- http://www.analyzemath.com/ap_calculus.html
- https://online.math.uh.edu/apcalculus/exams/
Field Trips

<table>
<thead>
<tr>
<th>SIX FLAGS GREAT ADVENTURE: This educational event includes workbooks and special science and math related shows throughout the day. Your students will leave with a better understanding of real world applications of the material they have learned in the classroom. Each student will have the opportunity to experience different rides and attractions linking mathematical and scientific concepts to what they are experiencing. www.sixflags.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSEUM of MATHEMATICS: Mathematics illuminates the patterns that abound in our world. The National Museum of Mathematics strives to enhance public understanding and perception of mathematics. Its dynamic exhibits and programs stimulate inquiry, spark curiosity, and reveal the wonders of mathematics. The Museum’s activities lead a broad and diverse audience to understand the evolving, creative, human, and aesthetic nature of mathematics. www.momath.org</td>
</tr>
<tr>
<td>LIBERTY SCIENCE CENTER: An interactive science museum and learning center located in Liberty State Park. The center, which first opened in 1993 as New Jersey's first major state science museum, has science exhibits, the largest IMAX Dome Theater in the United States, numerous educational resources, and the original Hoberman sphere. http://lsc.org/plan-your-visit/</td>
</tr>
</tbody>
</table>
Marking Period 4 – Suggested Project

* Projects begin at the start of the marking period and finish at the end.

For your final grade this year, you will have two options to choose from. This will count as a test grade. The project will consist of 2 parts. For part I, you will create a video. For part II you must create an art piece. Each part is 50% of the project grade. Projects have a limit of 4 class members for the video, and two members for the art piece, all of which must be in the same class period. You also may work individually or with a partner.

Part I

Create a math video, music video, or skit on a Calculus topic. The video must be at least 4 minutes long.

Part II - Art Piece

There are two requirements for the art project: an art piece and a museum appropriate, information tag including a summary of the art you created, how it incorporates your topic, and what you intend viewers to think about when they see the art. You may pick your own topic, but must get topic and proposal approved. Make sure your art shows your understanding of the calculus topic. On the due date, you are to turn in the actual artwork and a printout of the information tag.

* See MP4 Project folder for full project and rubric.